Tutorial 8

Haowei Qi

March 19, 2025

Contents

1	Question 1: §7.3 Q10	1
2	Question 2: §7.3 Q13	1
3	Question 3: §7.3 Q22	1
4	Question 4: §7.4 Q7	2
5	Question 5: §7.4 Q12	3

1 Question 1: §7.3 Q10

Let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and let $v : [c, d] \to \mathbb{R}$ be differentiable on [a, b]with $v([c, d]) \subset [a, b]$. If we define $G(x) = \int_a^{v(x)} f$, show that $G'(x) = f(v(x)) \cdot v'(x)$ for all $x \in [c, d]$.

Proof. First, by Theorem 7.3.14, G(x) is well-defined on [c, d]. Let $F(y) = \int_a^y f(y) \, dy$. Then by Fundamental Theorem of Calculus, F'(y) = f(y). Since $G(x) = F(v(x)) = F \circ v(x)$ and F, v are differentiable, G'(x) = F'(v(x))v'(x) by Theorem 6.1.6 Chain Rule, which is

$$G'(x) = f(v(x))v'(x).$$

2 Question 2: §7.3 Q13

If $f : \mathbb{R} \to \mathbb{R}$ be continuous and c > 0, define $g : \mathbb{R} \to \mathbb{R}$ by $g(x) = \int_{x-c}^{x+c} f(t) dt$. Show that g is differentiable on \mathbb{R} and find g'(x).

Proof. For any fixed point $a \in \mathbb{R}$, $g(x) = \int_{x-c}^{x+c} f(t)dt = \int_{a}^{x+c} f(t)dt - \int_{a}^{x-c} f(t)dt = g_{+}(x) - g_{-}(x)$ by Fundamental Theorem of Calculus. Since $g_{+}(x) = \int_{a}^{x+c} f(t) dt$, from Question 1, $g'_{+}(x) = f(x+c)$. By same reason, $g'_{-}(x) = f(x-c)$. Thus, $g'(x) = g'_{+}(x) - g'_{-}(x) = f(x+c) - f(x-c)$.

3 Question 3: §7.3 Q22

Let $h: [0,1] \to \mathbb{R}$ be Thomae's function and let sgn be the signum function. Show that the composite function sgn $\circ h$ is not Riemann integrable on [0,1].

Proof. From above,

$$g(x) = \operatorname{sgn} \circ h = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

is a real function on [0, 1], actually called Dirichlet function.

Suppose f is Riemann integrable with its integral L. It is clear that $0 \le L \le 1$. If $L \ne 1$, let $\epsilon = \frac{1-L}{2}$. For any $\delta > 0$, let $P = \{[x_{i-1}, x_i]; t_i \in \mathbb{Q} \cap [x_{i-1}, x_i]\}$ with its norm $\|P\| \le \delta$. Then $|S(f; P) - L| = |1 - L| > \epsilon = \frac{1-L}{2}$, which is a contradiction.

If L = 1, let $\epsilon = \frac{L}{2}$. For any $\delta > 0$, let $P = \{[x_{i-1}, x_i]; t_i \in \mathbb{Q}^c \cap [x_{i-1}, x_i]\}$ with its norm $||P|| \leq \delta$. Then $|S(f; P) - L| = |L| > \epsilon = \frac{L}{2}$, which is a contradiction.

Hence it is not Riemann integrable.

4 Question 4: §7.4 Q7

(a) Prove that if g(x) = 0 for $0 \le x \le \frac{1}{2}$ and g(x) = 1 for $\frac{1}{2} < x \le 1$, then the Darboux integral of g on [0, 1] is equal to $\frac{1}{2}$.

(b) Does the conclusion hold if we change the value of g at the point $\frac{1}{2}$ to 13?

Proof. (a) Let $P_n = \{ [x_{i-1}, x_i] \}_{i=1}^n \cup \{ [x_{i-1}, x_i] \}_{i=n+1}^{2n}$, where $x_n = \frac{1}{2}$ and $|x_i - x_{i-1}| = \frac{1}{2n}$ for all i.

Hence

$$L(f; P_n) = \sum_{i=1}^{2n} m_i (x_i - x_{i-1}) = 0 \cdot \sum_{i=1}^{n+1} (x_i - x_{i-1}) + 1 \cdot \sum_{i=n+2}^{2n} (x_i - x_{i-1}) = \frac{1}{2} - \frac{1}{2n}$$

and

$$U(f; P_n) = \sum_{i=1}^{2n} M_i(x_i - x_{i-1}) = 0 \cdot \sum_{i=1}^{n} (x_i - x_{i-1}) + 1 \cdot \sum_{i=n+1}^{2n} (x_i - x_{i-1}) = \frac{1}{2}$$

Thus $\int_0^1 f = \frac{1}{2}$.

(b) Yes. Let $P_n = \{ [x_{i-1}, x_i] \}_{i=1}^n \cup \{ [x_{i-1}, x_i] \}_{i=n+1}^{2n}$, where $x_n = \frac{1}{2}$ and $|x_i - x_{i-1}| = \frac{1}{2n}$ for all i.

Hence

$$L(f; P_n) = \sum_{i=1}^{2n} m_i (x_i - x_{i-1}) = 0 \cdot \sum_{i=1}^{n+1} (x_i - x_{i-1}) + 1 \cdot \sum_{i=n+2}^{2n} (x_i - x_{i-1}) = \frac{1}{2} - \frac{1}{2n}$$

and

$$U(f; P_n) = \sum_{i=1}^{2n} M_i(x_i - x_{i-1})$$

= $0 \cdot \sum_{i=1}^{n-1} (x_i - x_{i-1}) + 13(x_n - x_{n-1}) + 13(x_{n+1} - x_n) + 1 \cdot \sum_{i=n+2}^{2n} (x_i - x_{i-1})$
= $\frac{1}{2} + \frac{25}{2n}$

Hence $\int_0^1 f = \frac{1}{2}$.

5 Question 5: §7.4 Q12

Let $f(x) = x^2$ for $0 \le x \le 1$. For the partition $P_n = (0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1)$, calculate $L(f, P_n)$ and $U(f, P_n)$ and show that $L(f) = U(f) = \frac{1}{3}$. Use the formula $\sum_{k=1}^n k^2 = \frac{1}{6}n(n+1)(2n+1)$.

Proof. By definition,

$$L(f, P_n) = \sum_{i=1}^n m_i (x_i - x_{i-1})$$
$$= \sum_{i=1}^n (\frac{i-1}{n})^2 \frac{1}{n}$$
$$= \sum_{i=1}^n (\frac{i}{n})^2 \frac{1}{n} - \frac{1}{n}$$
$$= \frac{1}{6} (2 - \frac{3}{n} + \frac{1}{n^2})$$

and

$$U(f, P_n) = \sum_{i=1}^n M_i (x_i - x_{i-1})$$
$$= \sum_{i=1}^n (\frac{i}{n})^2 \frac{1}{n}$$
$$= \frac{1}{6} (2 + \frac{3}{n} + \frac{1}{n^2})$$

Using the fact $\lim_{n\to\infty} L(f; P_n) \le L(f) \le U(f) \le \lim_{n\to\infty} U(f; P_n)$,

$$\frac{1}{3} \le L(f) \le U(f) \le \frac{1}{3}.$$

1				I
1				I
L	_	_	_	J