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1 Question 1: §7.3 Q10

Let f : [a,b] — R be continuous on [a, b] and let v : [¢,d] — R be differentiable on |[a, b]
with v([e,d]) C [a,b]. If we define G(x f ) #, show that G'(z) = f(v(z)) - V'(x) for
all z € ¢, d].

Proof. First, by Theorem 7.3.14, G(z) is well-defined on [c,d]. Let F(y) = [” f(y)dy
Then by Fundamental Theorem of Calculus, F'(y) = f(y). Since G(x) = F(v(z)) =
Fowu(z) and F, v are differentiable, G'(z) = F'(v(x))v'(z) by Theorem 6.1.6 Chain Rule,

which is

O
2 Question 2: §7.3 Q13
If f:R — R be continuous and ¢ > 0, define g : R — R by g(z f“cf dt. Show
that g is differentiable on R and find ¢'(x).
Proof. For any fixed point a € R, g(x fﬁccf t)dt = fﬁcf tydt — [T7° f(t)
g+(x) — g—(z) by Fundamental Theorem of Calculus. Since g, (z) = [, e f(t)dt, from

Question 1, ¢ (z) = f(x + ¢). By same reason, ¢’ (z) = f(x —¢). Thus, ¢ (z) =
94 (@) —g_(z) = f(z +¢) = flz — o). B

3 Question 3: §7.3 Q22

Let h : [0,1] — R be Thomae’s function and let sgn be the signum function. Show that

the composite function sgn o h is not Riemann integrable on [0, 1].
Proof. From above,
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g(x) =sgnoh=

is a real function on [0, 1], actually called Dirichlet function.



Suppose f is Riemann integrable with its integral L. It is clear that 0 < L < 1. If
L#1,let e=15E Forany § >0, let P = {[xi,l,:z:i]‘t € QN [wi—y, x;]} with its norm

|P|| < 6. Then |S(f; P) — L| = |1 — L| > e = 3£, which is a contradiction.

If L =1,lete=2% Forany d >0, let P = {[z;—1,z];t; € Q°N [2,1, 2]} with its
norm ||P|| < 4. Then |S(f; P) — L| =|L| > e = £, which is a contradiction.

Hence it is not Riemann integrable. O

4 Question 4: §7.4 Q7

(a) Prove that if g(z) = 0 for 0 < z < 5 and g(z) = 1 for ; < 2 < 1, then the Darboux
integral of g on [0, 1] is equal to 1.

(b) Does the conclusion hold if we change the value of g at the point % to 137

Proof. (a) Let P, = {[x;_1, x|}y U {[:Ui,l,xi]}fﬁnﬂ, where z,, = % and |z; — x;_q| = %

for all 7.
Hence
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Thus [, f = 1.
(b) Yes. Let P, = {[zi—1, 2]}y U{[wi1, 2]} 41, Where 2, = £ and |2; — 24| = 5
for all 4.
Hence
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Hence fol f=1i

5 Question 5: §7.4 Q12

Let f(z) = x* for 0 < o < 1. For the partition P, = (0,%,2,... 21
L(f,P,) and U(f, P,) and show that L(f) = U(f) =
tn(n+1)(2n+1).
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Use the formula Y ;_ k% =
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